白菜娱乐城-KK娱乐_百家乐筹码防伪套装_全讯网144 (中国)·官方网站

您當前所在位置: 首頁 > 講座報告 > 正文
講座報告

The Next Frontier: Engineering Magnetotheranostics for Magnetic Particle Imaging

來源:生命科學技術學院          點擊:
報告人 Jeff W.M. Bulte 教授 時間 9月12日10:00
地點 會議中心104 報告時間

講座名稱:The Next Frontier: Engineering Magnetotheranostics for Magnetic Particle Imaging

講座人:Jeff W.M. Bulte 教授

講座時間:9月12日10:00-12:00

講座地點:會議中心104


講座人介紹:

Jeff W.M. Bulte博士是約翰·霍普金斯大學醫學院放射學、腫瘤學、生物醫學工程以及化學與生物分子工程教授。他是首任科學傳播放射學主任,并擔任約翰·霍普金斯細胞工程研究所細胞成像主任。他是ISMRM院士及金牌獲得者,WMIS、AIMBE和IAMBE院士,以及放射學研究院杰出研究員。他已發表350多篇論文和書籍章節,被引用超過4萬次。他的研究方向是開發新型造影劑和納米診療技術,并將其應用于分子和細胞成像,尤其側重于體內細胞追蹤和再生醫學。


講座內容:

Magnetic nanoparticles, including those formed of superparamagnetic iron oxides (SPIOs), are employed in various magnetic imaging and therapeutic techniques. In vivo imaging techniques include magnetic resonance imaging (MRI), magneto-motive ultrasonography (MMUS), magneto-photoacoustic imaging (MPAI), and magnetic particle imaging (MPI). An early example of magnetotheranostics are magnetically labeled therapeutic cells , i.e., immune cells for immunotherapy or stem cells for stem cell therapy, that can visualize their target after homing through trophic signaling, hereby also providing a diagnostic tool. More recently, the field of stem cell therapy has shifted towards “cell-free” therapy after recognizing that many of the active biomolecules are released by extracellular vesicles (EVs). Similar to their parental cells, EVs can be tracked in vivo after proper magnetic labeling, offering diagnostic information on for instance sites of inflammation in addition to exerting immunosuppresive therapeutic effects . Our lab and others have been exploring MPI to not only visualize the dynamic homing processes but also to provide quantative information using MPI “cytometry” and “EVmetry”.

A recent development in MPI-guided therapy has been the use of magnetotheranostics for magnetic fluid hyperthermia (MFH) or, when combined with gold nanoparticles, for photothermal therapy (PTT) . This has been demonstrated to be feasible not only for naked nanoparticles but also for labeled stem cells that can carry the nanoparticles towards the tumor for subsequent heating. Preclinical data indicate that the physical conditions required to heat up magnetic nanoparticles, including energy considerations, particle modifications, localization, and exposure time, can be dynamically modulated during a single treatment procedure by monitoring imaging data acquired from the same magnetic nanoparticles. This allows to selectively and precisely heat tumor locations while avoiding damage to surrounding healthy tissue, providing individualized treatment plans based on information about the biodistribution of magnetic nanoparticles within the tumor and adjacent organs, as well as the volumetric distribution of the thermal dose.


主辦單位:生命科學技術學院

123

南校區地址:陜西省西安市西灃路興隆段266號

郵編:710126

北校區地址:陜西省西安市太白南路2號

郵編:710071

訪問量:

版權所有:西安電子科技大學    建設與運維:信息網絡技術中心     陜ICP備05016463號    陜公網安備61019002002681號

博彩评测网| 德州扑克初级教程| 百家乐作弊工具| 大发888亚付宝充值| 百家乐官网博赌城| 德州扑克概率计算器| 澳门百家乐搏牌规则| 大发888亚洲游戏咋玩| 百家乐官网赌场群| 百家乐正网| 真人百家乐官网蓝盾娱乐网| 百家乐官网大小桌布| 博彩e族字谜专区| 保险百家乐怎么玩| 百家乐官网智能系统| 右玉县| 百家乐官网高人破解| 乐天堂百家乐娱乐| 百家乐官网作弊| 百家乐官网赔率技巧| 威尼斯人娱乐网注册网址| 百家乐官网tt娱乐| 大发888游戏平台46| 威尼斯人娱乐百利宫| 百家乐视频双扣| 百家乐官网包赢技巧| 棋牌58w| bodog博狗| 豫游棋牌游戏中心| 二八杠语音报牌器| 柬埔寨百家乐官网的玩法技巧和规则| 百家乐官网的玩法技巧和规则| 战神百家乐官网娱乐| 大发888娱乐在线| 威尼斯人娱乐网送38元彩金| 德州扑克软件| 澳门百家乐游戏| 百家乐U盘下载| 百家乐网址官网| 百家乐赌场怎么玩| 真人百家乐官网信誉|