白菜娱乐城-KK娱乐_百家乐筹码防伪套装_全讯网144 (中国)·官方网站

您當前所在位置: 首頁 > 講座報告 > 正文
講座報告

The Next Frontier: Engineering Magnetotheranostics for Magnetic Particle Imaging

來源:生命科學技術學院          點擊:
報告人 Jeff W.M. Bulte 教授 時間 9月12日10:00
地點 會議中心104 報告時間

講座名稱:The Next Frontier: Engineering Magnetotheranostics for Magnetic Particle Imaging

講座人:Jeff W.M. Bulte 教授

講座時間:9月12日10:00-12:00

講座地點:會議中心104


講座人介紹:

Jeff W.M. Bulte博士是約翰·霍普金斯大學醫學院放射學、腫瘤學、生物醫學工程以及化學與生物分子工程教授。他是首任科學傳播放射學主任,并擔任約翰·霍普金斯細胞工程研究所細胞成像主任。他是ISMRM院士及金牌獲得者,WMIS、AIMBE和IAMBE院士,以及放射學研究院杰出研究員。他已發表350多篇論文和書籍章節,被引用超過4萬次。他的研究方向是開發新型造影劑和納米診療技術,并將其應用于分子和細胞成像,尤其側重于體內細胞追蹤和再生醫學。


講座內容:

Magnetic nanoparticles, including those formed of superparamagnetic iron oxides (SPIOs), are employed in various magnetic imaging and therapeutic techniques. In vivo imaging techniques include magnetic resonance imaging (MRI), magneto-motive ultrasonography (MMUS), magneto-photoacoustic imaging (MPAI), and magnetic particle imaging (MPI). An early example of magnetotheranostics are magnetically labeled therapeutic cells , i.e., immune cells for immunotherapy or stem cells for stem cell therapy, that can visualize their target after homing through trophic signaling, hereby also providing a diagnostic tool. More recently, the field of stem cell therapy has shifted towards “cell-free” therapy after recognizing that many of the active biomolecules are released by extracellular vesicles (EVs). Similar to their parental cells, EVs can be tracked in vivo after proper magnetic labeling, offering diagnostic information on for instance sites of inflammation in addition to exerting immunosuppresive therapeutic effects . Our lab and others have been exploring MPI to not only visualize the dynamic homing processes but also to provide quantative information using MPI “cytometry” and “EVmetry”.

A recent development in MPI-guided therapy has been the use of magnetotheranostics for magnetic fluid hyperthermia (MFH) or, when combined with gold nanoparticles, for photothermal therapy (PTT) . This has been demonstrated to be feasible not only for naked nanoparticles but also for labeled stem cells that can carry the nanoparticles towards the tumor for subsequent heating. Preclinical data indicate that the physical conditions required to heat up magnetic nanoparticles, including energy considerations, particle modifications, localization, and exposure time, can be dynamically modulated during a single treatment procedure by monitoring imaging data acquired from the same magnetic nanoparticles. This allows to selectively and precisely heat tumor locations while avoiding damage to surrounding healthy tissue, providing individualized treatment plans based on information about the biodistribution of magnetic nanoparticles within the tumor and adjacent organs, as well as the volumetric distribution of the thermal dose.


主辦單位:生命科學技術學院

123

南校區地址:陜西省西安市西灃路興隆段266號

郵編:710126

北校區地址:陜西省西安市太白南路2號

郵編:710071

訪問量:

版權所有:西安電子科技大學    建設與運維:信息網絡技術中心     陜ICP備05016463號    陜公網安備61019002002681號

百家乐官网平注常赢打法| 百家乐官网筹码真伪| 百家乐官网de概率| 微信百家乐官网群资源| TT娱乐城开户,| 百家乐专打单跳投注法| 南宁百家乐赌机| 百家乐官网技巧在那里| 励骏会百家乐的玩法技巧和规则 | 百家乐官网透视牌靴哪里有| 太阳城娱乐城网址| 菲律宾百家乐娱乐平台| 百家乐官网怎样出千| 博盈| 广发百家乐的玩法技巧和规则 | 澳门玩百家乐官网00| 波音网百家乐官网合作| 大发888官方pt老虎机大咖炸金花网页扎金花 | 大发888出纳柜台 在线| 百家乐认牌| 百家乐官网板路| 百家乐官网网站加盟| 大发888游戏平台17| 博狗百家乐的玩法技巧和规则 | 博士娱乐| 博天堂百家乐的玩法技巧和规则| 适合做生意的开运方法| 百家乐官网过两关| 焦作市| bet365| 水浒传老虎机破解| 百家乐有没有破解之法| 英皇娱乐| 易胜博足球开户| 威尼斯人娱乐场的微博| 百家乐出千手法| 百家乐平台信誉| 百家乐的路单怎样看| 天猫百家乐官网娱乐城| 至尊百家乐官网20130201| 百家乐官网噢门棋牌|